
Pratyush Mishra
UPenn
Fall 2025

Succinct Arguments

Lecture 08:  
Multilinear PIOP for R1CS

Summary of current PIOP for R1CS

2

We constructed a succinct-verifier PIOP
for R1CS with the following properties:

• Prover time:
• Verifier time:
• Number of rounds:

O(n log n)
O(log n)
O(1)

This lecture: linear prover time [Setty20]

3

We will construct a succinct-verifier PIOP
for R1CS with the following properties:

• Prover time:
• Verifier time:
• Number of rounds:

O(n)
O(log n)
O(log n)

Key tool:
multilinear extensions

Key tool: Multilinear extensions
Multilinear Interpolation:
Given a function , we can extend to obtain a multilinear
polynomial such that for all .

Multilinear means the polynomial has degree at most 1 in each variable.

Multilinear Lagrange Polynomial:
For each , is 1 at , and 0 for all .

Can write ⇒ Can be evaluated in

Equiv, is a multilinear poly over vars

f : {0,1}ℓ → 𝔽 f
p(X1, …, Xℓ) p(x) = f (x) x ∈ {0,1}ℓ

i ∈ {0,1}ℓ eq(i, X) i j ∈ {0,1}ℓ, j ≠ i

eq(i, X) :=
ℓ

∏
j=1

(ij ⋅ Xj + (1 − ij)(1 − Xj)) O(ℓ)

eq(i, X) :=
ℓ

∏
j=1

(ij ⋅ Xj + (1 − ij)(1 − Xj)) 2ℓ
5

Multilinear PIOP
For R1CS

What checks do we need?

7

Step 2: Correct matrix-vector multiplication
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

Multilinear PIOP for Rowcheck

8

Prover
1. Interpolate to get .

(F, x, w)
zA, zB, zC ̂zA, ̂zB, ̂zC

Verifier

(F, x)
̂z

ZeroCheck
PIOP for
̂zA ⋅ ̂zB − ̂zC

How to answer queries for
 ?̂zA, ̂zB, ̂zC

How to evaluate ?̂zM(r)

9

̂zM(r) = ∑
i∈H

zM[i] ⋅ eq(i, r)

= ∑
i∈H

∑
j∈H

M[i, j] ⋅ z[j] ⋅ eq(i, r)

= ∑
i∈H

∑
j∈H

M̂(i, j) ⋅ ̂z(j) ⋅ eq(i, r)

Performing sumcheck for this will lead to verifier needing to
check evaluations for .

How to compute/check evaluation for ?

M̂(α, β), ̂z(β), eq(α, r)

M̂(α, β)

Recall: univariate case: encode matrix?

10

Polynomial Interpolation of Lists:
Given a list , and a set , the interpolation of over is A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:
Given a list , and a set , the bivariate interpolation of over is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y)

Problem: computing this requires workO(|H |2)

Multilinear case?

11

Polynomial Interpolation of Lists:
Given list , and hypercube , interpolation of over : A = (a0, …, ad) H = {0,1}log d A H

̂a(X) := ∑
i∈H

ai ⋅ eq(i, X)

Polynomial Interpolation of Matrices?:
Given matrix , and set , the bivariate interpolation of over is M ∈ 𝔽n×n H A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq(j, Y)

Problem: evaluating this requires workO(|H |2)

Insight: The matrices are sparse!

12

Most are zero!Mij

Can rewrite as ,  

 is a hypercube that indexes non-zero entries

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅ eq(̂𝗋(k), X) ⋅ eq(̂𝖼(k), Y)

K

Polynomial Interpolation of Matrices?:
Given matrix , and set , the bivariate interpolation of over is M ∈ 𝔽n×n H A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq(j, Y)

Not a polynomial!

Attempt 1:

13

 M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅ eq(̂𝗋(k), X) ⋅ eq(̂𝖼(k), Y)

Set to be a tuple of polynomials. That is, 
 

̂𝗋(k)

̂𝗋(k) = (̂𝗋0(k), ̂𝗋1(k), …, ̂𝗋ℓ−1(k))

So now ,  

is a sum check over (composition of) polynomials!

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅ eq(̂𝗋(k), X) ⋅ eq(̂𝖼(k), Y)

Are we done?

Sumcheck over -degree polynomials.
Leads to time !

ℓ
O(d log d)

Attempt 2:

14

We don’t need the actual polynomial  
 
Instead, the polynomial that equals over is good enough! 

eq(̂𝗋(k), α)

eq(̂𝗋(k), α) K

Prover
1. Compute evaluations of

,
2. Send polynomials for these

(M, z)

eq(̂𝗋(k), α) eq(̂𝖼(k), β)
𝗋′￼, 𝖼′￼

Verifier

̂𝗋, ̂𝖼, 𝗏̂()

𝖼′￼𝗋′￼

Sumcheck

∑ 𝗏̂ ⋅ 𝗋′￼⋅ 𝖼′￼

Are we done?

How do we know these are the correct
polynomials?

15

Checking equality of evals

eq(0,α)

eq(1,α)

eq(2,α)

eq(3,α)
eq(4,α)

eq(5,α)

eq(6,α)

eq(7,α)

eqH(X, α)

Every element of the evaluation table of  
is an element of the evaluation table of !

𝗋′￼(X)
eqH(X, α)

eq(0,α)

eq(3,α)

eq(6,α)

eq(3,α)
eq(2,α)

eq(5,α)

eq(6,α)

eq(1,α)

eq(7,α)

eq(4,α)

𝗋′￼(X)

PIOPs for multiset
inclusion or lookups

How to check multiset inclusion?

17

Warmup: set equality

18

1
2
3
4
5
6
7
8

A
2
1
7
6
4
5
3
8

B

When are these two sets equal?  
How to encode equality as a polynomial?

∏
a∈A

(X − a) = ∏
b∈B

(X − b)
Polynomial
fingerprint

Multiset equality?

19

1
1
3
4
5
6
7
8

A
1
1
7
6
4
5
3
8

B

When are these two multisets equal?  
How to encode equality as a polynomial?

∏
a∈A

(X − a) = ∏
b∈B

(X − b)

Multiset inclusion?

20

1
1
3
4
5
6
7
8

A
1
2
7
6
4
5
3
8

B

When is multiset included in ?  
How to encode equality as a polynomial?

A B

 doesn’t work!∏
a∈A

(X − a) = ∏
b∈B

(X − b)

Multiset inclusion?

21

 

 

∏
a∈A

(X − a) = (X − 1)2 ⋅ (X − 3)⋯(X − 8)

∏
b∈B

(X − b) = (X − 1) ⋅ (X − 2) ⋅ (X − 3)⋯(X − 8)

They have common roots (up to multiplicity)! 
 

In particular, is included in if and only if 
the roots of ’s polynomial are a subset of 

 those of ’s polynomial!

A B
A

B

Multiset inclusion?

22

 

 

∏
a∈A

(X − a) = (X − 1)2 ⋅ (X − 3)⋯(X − 8)

∏
b∈B

(X − b) = (X − 1) ⋅ (X − 2) ⋅ (X − 3)⋯(X − 8)

Need to handle two things:

1. Elements in not in
2. Repeated elements in

B A
A

To handle this, we will introduce a multiplicity function  
such that := number of times appears in

m
m(b) b ∈ B A

Multiset inclusion?

23

1
1
3
4
5
6
7
8

A
1
2
7
6
4
5
3
8

B

When is multiset included in ?  
How to encode equality as a polynomial?

A B

∏
a∈A

(X − a) = ∏
b∈B

(X − b)m(b)

PIOP for polynomial fingerprinting

24

Attempt 1:

25

Prover
1. Send polynomials whose

evaluations are elements of ,
and interpolation of

2. Need to prove somehow that

a, b
A, B

m

∏
h∈H

(γ − a(h)) = ∏
h∈H

(γ − b(h))m(h)

Verifier
1. Sample

γ ← 𝔽ba m

γ

How to do product check?

26

Number of approaches today: 

1. Direct construction [GW19] 

2. Construct specialized circuit [Setty20] 

3. Logarithmic derivatives [Habock22]

Logarithmic derivative

27

The logarithmic derivative of a polynomial is

 
Important properties: 

1. log-derivative of product is sum of log-derivatives: 
 

 

2. Log-derivative of

p(X)
p′￼(X)
p(X)

(p1(X) ⋅ p2(X))′￼

p1(X) ⋅ p2(X)
=

p′￼1(X) ⋅ p2(X) + p1(X) ⋅ p′￼2(X)
p1(X) ⋅ p2(X)

=
p′￼1(X)
p1(X)

+
p′￼2(X)
p2(X)

.

∏
a

(X − a) = ∑
1

X − a

PIOP for Multiset inclusion!

28

Prover
1. Send polynomials whose

evaluations are elements of ,
and interpolation of

2. Rational sumcheck to prove that

a, b
A, B

m

∏
h∈H

(γ − a(h)) = ∏
h∈H

(γ − b(h))m(h)

Verifier
1. Sample

γ ← 𝔽ba m

γ

Rational sumcheck:

∑
h∈H

1
γ − a(h)

= ∑
h∈H

m(h)
γ − b(h)

Back to PIOP for lincheck:

29

Prover
1. Compute evaluations of

,
2. Send polynomials for these

(M, z)

eq(̂𝗋(k), α) eq(̂𝖼(k), β)
𝗋′￼, 𝖼′￼

Verifier

̂𝗋, ̂𝖼, 𝗏̂()

𝖼′￼𝗋′￼

Sumcheck

∑ 𝗏̂ ⋅ 𝗋′￼⋅ 𝖼′￼

Multiset inclusion:
 𝗋′￼∈ eq(α, H)

𝖼′￼∈ eq(β, H)

Other apps of multiset inclusion

30

Lookups
 
For many computations, expressing them as circuits over is wasteful. 
 
Eg: 8-bit XOR is cheap on a CPU, but requires 8 constraints in R1CS. 
 
Instead,  
 during preprocessing, build table containing all input-output triples for 8-bit XOR  
 during proving, instead of constraining witnesses with R1CS, constrain with multiset-
inclusion in !

𝔽

T

T

