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Summary of current PIOP for R1CS
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We constructed a succinct-verifier PIOP 
for R1CS with the following properties: 

• Prover time:              
• Verifier time:             
• Number of rounds:  

O(n log n)
O(log n)
O(1)



This lecture: linear prover time [Setty20]
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We will construct a succinct-verifier PIOP 
for R1CS with the following properties: 

• Prover time:              
• Verifier time:             
• Number of rounds:  

O(n)
O(log n)
O(log n)



Key tool:  
multilinear extensions



Key tool: Multilinear extensions
Multilinear Interpolation:  
Given a function , we can extend  to obtain a multilinear 
polynomial  such that  for all . 

Multilinear means the polynomial has degree at most 1 in each variable. 
 
Multilinear Lagrange Polynomial: 
For each ,   is 1 at , and 0 for all . 

Can write  ⇒ Can be evaluated in  

Equiv,  is a multilinear poly over  vars

f : {0,1}ℓ → 𝔽 f
p(X1, …, Xℓ) p(x) = f (x) x ∈ {0,1}ℓ

i ∈ {0,1}ℓ eq(i, X ) i j ∈ {0,1}ℓ, j ≠ i

eq(i, X ) :=
ℓ

∏
j=1

(ij ⋅ Xj + (1 − ij)(1 − Xj)) O(ℓ)

eq(i, X ) :=
ℓ

∏
j=1

(ij ⋅ Xj + (1 − ij)(1 − Xj)) 2ℓ
5



Multilinear PIOP 
For R1CS



What checks do we need?
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Step 2: Correct matrix-vector multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]



Multilinear PIOP for Rowcheck
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Prover  
1. Interpolate  to get . 

(F, x, w)
zA, zB, zC ̂zA, ̂zB, ̂zC

Verifier  
 
 
 
 

(F, x)
̂z

ZeroCheck 
PIOP for 
̂zA ⋅ ̂zB − ̂zC

How to answer queries for 
 ?̂zA, ̂zB, ̂zC



How to evaluate  ?̂zM(r)
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̂zM(r) = ∑
i∈H

zM[i] ⋅ eq(i, r)

= ∑
i∈H

∑
j∈H

M[i, j] ⋅ z[ j] ⋅ eq(i, r)

= ∑
i∈H

∑
j∈H

M̂(i, j) ⋅ ̂z( j) ⋅ eq(i, r)

Performing sumcheck for this will lead to verifier needing to 
check evaluations for  . 

How to compute/check evaluation for ?

M̂(α, β), ̂z(β), eq(α, r)

M̂(α, β)



Recall: univariate case: encode matrix?
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Polynomial Interpolation of Lists:  
Given a list , and a set , the interpolation of  over  is A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y )

Problem: computing this requires  workO( |H |2 )



Multilinear case?
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Polynomial Interpolation of Lists:  
Given list , and hypercube , interpolation of  over  : A = (a0, …, ad) H = {0,1}log d A H

̂a(X) := ∑
i∈H

ai ⋅ eq(i, X)

Polynomial Interpolation of Matrices?:  
Given matrix , and set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq( j, Y )

Problem: evaluating this requires  workO( |H |2 )



Insight: The matrices are sparse!
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Most  are zero!Mij

Can rewrite as ,  

 is a hypercube that indexes non-zero entries

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅ eq( ̂𝗋(k), X ) ⋅ eq( ̂𝖼(k), Y )

K

Polynomial Interpolation of Matrices?:  
Given matrix , and set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq( j, Y )

Not a polynomial!



Attempt 1:
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M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅ eq( ̂𝗋(k), X ) ⋅ eq( ̂𝖼(k), Y )

Set  to be a tuple of polynomials. That is, 
 

̂𝗋(k)

̂𝗋(k) = ( ̂𝗋0(k), ̂𝗋1(k), …, ̂𝗋ℓ−1(k))

So now ,  

is a sum check over (composition of) polynomials!

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅ eq( ̂𝗋(k), X ) ⋅ eq( ̂𝖼(k), Y )

Are we done?

Sumcheck over -degree polynomials. 
Leads to time !

ℓ
O(d log d )



Attempt 2:
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We don’t need the actual polynomial  
 
Instead, the polynomial that equals  over  is good enough! 

eq( ̂𝗋(k), α)

eq( ̂𝗋(k), α) K

Prover  
1. Compute evaluations of 

,  
2. Send polynomials  for these

(M, z)

eq( ̂𝗋(k), α) eq( ̂𝖼(k), β)
𝗋′￼, 𝖼′￼

Verifier  
 

̂𝗋, ̂𝖼, 𝗏̂()

𝖼′￼𝗋′￼

Sumcheck 

∑ 𝗏̂ ⋅ 𝗋′￼⋅ 𝖼′￼

Are we done?

How do we know these are the correct 
polynomials?



15

Checking equality of evals

eq(0,α)

eq(1,α)

eq(2,α)

eq(3,α)
eq(4,α)

eq(5,α)

eq(6,α)

eq(7,α)

eqH(X, α)

Every element of the evaluation table of   
is an element of the evaluation table of !

𝗋′￼(X )
eqH(X, α)

eq(0,α)

eq(3,α)

eq(6,α)

eq(3,α)
eq(2,α)

eq(5,α)

eq(6,α)

eq(1,α)

eq(7,α)

eq(4,α)

𝗋′￼(X )



PIOPs for multiset 
inclusion or lookups



How to check multiset inclusion?
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Warmup: set equality
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1
2
3
4
5
6
7
8

A
2
1
7
6
4
5
3
8

B

When are these two sets equal?  
How to encode equality as a polynomial?

∏
a∈A

(X − a) = ∏
b∈B

(X − b)
Polynomial 
fingerprint



Multiset equality?
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1
1
3
4
5
6
7
8

A
1
1
7
6
4
5
3
8

B

When are these two multisets equal?  
How to encode equality as a polynomial?

∏
a∈A

(X − a) = ∏
b∈B

(X − b)



Multiset inclusion?
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1
1
3
4
5
6
7
8

A
1
2
7
6
4
5
3
8

B

When is multiset  included in ?  
How to encode equality as a polynomial?

A B

 doesn’t work!∏
a∈A

(X − a) = ∏
b∈B

(X − b)



Multiset inclusion?
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∏
a∈A

(X − a) = (X − 1)2 ⋅ (X − 3)⋯(X − 8)

∏
b∈B

(X − b) = (X − 1) ⋅ (X − 2) ⋅ (X − 3)⋯(X − 8)

They have common roots (up to multiplicity)! 
 

In particular,  is included in  if and only if 
the roots of ’s polynomial are a subset of 

 those of ’s polynomial!

A B
A

B



Multiset inclusion?
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∏
a∈A

(X − a) = (X − 1)2 ⋅ (X − 3)⋯(X − 8)

∏
b∈B

(X − b) = (X − 1) ⋅ (X − 2) ⋅ (X − 3)⋯(X − 8)

Need to handle two things:

1. Elements in  not in 
2. Repeated elements in 

B A
A

To handle this, we will introduce a multiplicity function  
such that  := number of times  appears in 

m
m(b) b ∈ B A



Multiset inclusion?
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1
1
3
4
5
6
7
8

A
1
2
7
6
4
5
3
8

B

When is multiset  included in ?  
How to encode equality as a polynomial?

A B

∏
a∈A

(X − a) = ∏
b∈B

(X − b)m(b)



PIOP for polynomial fingerprinting
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Attempt 1:
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Prover 
1. Send polynomials  whose 

evaluations are elements of , 
and interpolation of  

2. Need to prove somehow that 
 

 

a, b
A, B

m

∏
h∈H

(γ − a(h)) = ∏
h∈H

(γ − b(h))m(h)

Verifier 
1. Sample  
 

γ ← 𝔽ba m

γ



How to do product check?
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Number of approaches today: 

1. Direct construction [GW19] 

2. Construct specialized circuit [Setty20] 

3. Logarithmic derivatives [Habock22]



Logarithmic derivative
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The logarithmic derivative of a polynomial  is 

 
Important properties: 

1. log-derivative of product is sum of log-derivatives: 
 

 

2. Log-derivative of 

p(X )
p′￼(X )
p(X )

(p1(X ) ⋅ p2(X ))′￼

p1(X ) ⋅ p2(X )
=

p′￼1(X ) ⋅ p2(X ) + p1(X ) ⋅ p′￼2(X )
p1(X ) ⋅ p2(X )

=
p′￼1(X )
p1(X )

+
p′￼2(X )
p2(X )

.

∏
a

(X − a) = ∑
1

X − a



PIOP for Multiset inclusion!
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Prover 
1. Send polynomials  whose 

evaluations are elements of , 
and interpolation of  

2. Rational sumcheck to prove that 
 

 

a, b
A, B

m

∏
h∈H

(γ − a(h)) = ∏
h∈H

(γ − b(h))m(h)

Verifier 
1. Sample  
 

γ ← 𝔽ba m

γ

Rational sumcheck: 

∑
h∈H

1
γ − a(h)

= ∑
h∈H

m(h)
γ − b(h)



Back to PIOP for lincheck:
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Prover  
1. Compute evaluations of 

,  
2. Send polynomials  for these

(M, z)

eq( ̂𝗋(k), α) eq( ̂𝖼(k), β)
𝗋′￼, 𝖼′￼

Verifier  
 

̂𝗋, ̂𝖼, 𝗏̂()

𝖼′￼𝗋′￼

Sumcheck 

∑ 𝗏̂ ⋅ 𝗋′￼⋅ 𝖼′￼

Multiset inclusion: 
 𝗋′￼∈ eq(α, H )

𝖼′￼∈ eq(β, H )



Other apps of multiset inclusion
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Lookups
 
For many computations, expressing them as circuits over  is wasteful. 
 
Eg: 8-bit XOR is cheap on a CPU, but requires 8 constraints in R1CS. 
 
Instead,  
     during preprocessing, build table  containing all input-output triples for 8-bit XOR  
     during proving, instead of constraining witnesses with R1CS, constrain with multiset-
inclusion in !

𝔽

T

T


